Биоинженерия или киборгизация

Биоинженерия или киборгизация

Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.

Далее будут рассмотрены основные настройки дельта принтера.

Для управления и настройки принтера мы используем программу Pronterface.

Калибровка принтера делится на три этапа:

Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.

В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.

Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна A= X-52 Y-30; B= X+52 Y-30; C= X0 Y60.

  1. Подключаемся к принтеру. (В случае “крагозяб” в командной строке, необходимо сменить скорость COM порта. В нашем случае с 115200 на 250000 и переподключится)

После чего мы увидим все настройки принтера.

  • Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.

    И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.

  • Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)

  • Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.

  • Теперь приступаем непосредственно к настройке наших трех точек.

    Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.

    Buttom Title: Min A; Command: G1 X-52 Y-30; Color: Orange

    Buttom Title: Min B; Command: G1 X+52 Y-30; Color: Blue

    Buttom Title: Min C; Command: G1 X0 Y60; Color: Green

    Buttom Title: Zero; Command: G1 X0 Y0; Color: White

  • Последовательно перемещаясь между тремя точками (созданными ранее кнопками или командами) выясняем какая из них находится ниже всего (визуально) и принимает эту ось за нулевую, относительно нее мы будем менять высоту остальных двух точек.

  • Предположим, что точка A у нас ниже остальных. Перемещаем головку в точку B(Y) и клавишами управления высотой в Pronterface опускаем сопло до касания с нашим щупом, считая величину, на которую мы опустили сопло (в лоб считаем количество нажатий на кнопки +1 и +0.1)

    Далее командой меняем параметры высоты оси Y: M666 Y

  • Ту же операцию проделываем с оставшимися осями. После чего следует опять проверить высоту всех точек, может получится, что разброс высот после первой калибровки уменьшится, но высота все равно будет отличатся, при этом самая низкая точка может изменится. В этом случае повторяем пункты 6-7.

    Корректируется этот параметр т.н. дельта радиусом, который подбирается экспериментально.

    1. Отправляем головку на высоту щупа в любую из трех точек стола. Например G1 Z9 X-52 Y-30
    2. Сравниваем высоту центральной точки и высоту точек A,B,C. (Если высота точек A, B, C разная, необходимо вернутся к предыдущей калибровки.)
    3. Если высота центральной точки больше остальных, то линза выпуклая и необходимо увеличить значение дельта радиуса. Увеличивать или уменьшать желательно с шагом +-0,2мм, при необходимости уменьшить или увеличить шаг в зависимости от характера и величины искривления (подбирается экспериментально)
    4. Команды:

  • Подгоняем дельта радиус пока наша плоскость не выровняется
  • 3 Этап. Находим истинную высоту от сопла до столика

    Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,

    • Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
    • Командой M666 L получаем полное значение высоты (Параметр H)
    • После чего вычитаем из полной высоты фактическую высоту.
    • Получившееся значение вычитаем из высоты щупа.

    Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:

    Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.

    2015 ITnan.ru Design by Styleshout.

    Права на текст статей, расположенные на сайте, принадлежат их авторам. Источники статей: Хабрахабр и Гиктаймс.

    БИОИНЖЕНЕРИЯ НАСЕКОМЫХ-КИБОРГОВ

    Насекомые, управляемые с пульта ДУ, присутствуют не в одном фантастическом фильме и рассказе. Незаметные и ловкие разведчики, оставляющие позади любой микроскопический беспилотник, до сих пор виделись военным лишь в сладких снах. Но если есть заказ, учёные и инженеры рано или поздно его выполнят.

    Немало экспериментаторы поломали головы над оптимальной системой управления насекомыми. В 2008 году группа под руководством Майкла Махарбица (Michel Maharbiz) показала общественности первые успехи: сигналы, подаваемые на имплантированные в жуков электроды, заставляли последних начинать или прекращать махать крыльями (в зависимости от полярности напряжения).

    Ранние опыты с жуками-киборгами в университете Калифорнии (кадры Maharbiz Research Group).

    В первых опытах жуки были закреплены неподвижно, а сигналы посылались по проводкам. Далее учёные сумели отвязать своих подопечных: крошечные схемы управления научились помещать на самих насекомых. При этом подачей импульсов на отдельные мышцы, а также – при помощи полоски светодиодов, расположенной перед глазами летающего существа, исследователи научились задавать жуку направление движения.

    Но последовательность команд была зашита в памяти микросхемы, так что насекомое могло выполнять только жёстко предписанный "план полёта". Чтобы получить подлинное ДУ, нужно было добавить радиоканал. А это увеличивало вес электроники, что грозило настоящим тупиком.

    И вот в начале 2009 года объединённая команда двух университетов порадовала продолжением темы: впервые были "созданы" летающие насекомые-киборги с радиоуправлением.

    Комплекс дистанционного управления жуком (упрощённо): a) жук-киборг, b) ноутбук с подсоединённым через USB радиопередатчиком, c) приёмник, d) антенна, e) стимулирующие правый и левый "лобовые" электроды, f) летательные мускулы g) контрэлектрод (фотографии MEMS 2009 Technical Digest).

    В конце января американские умельцы выступили в Италии на международной конференции по микроэлектромеханическим системам IEEE MEMS 2009. Представлял работу один из её авторов Хиротака Сато (Hirotaka Sato).

    Жуки-носороги (Mecynorrhina torquata), использованные в данном эксперименте, насчитывали от 4 до 8 сантиметров в длину и весили от 4 до 10 граммов. Им имплантировали шесть электродов в мускулы и "мозги", а команды на взлёт, посадку или разворот теперь могли подаваться на расстоянии – с ноутбука.

    Для этого авторы исследования собрали крошечные контролирующие устройства, которые преобразовывали команды, принимаемые по радиоканалу, в электрические импульсы, подаваемые на электроды. Эти контроллеры и наклеили на спины подопытным созданиям.

    Управляющее устройство, вид сверху и снизу. Необычные приборчики были собраны из электронных компонентов от ряда известных промышленных компаний, в частности Texas Instruments (фотографии MEMS 2009 Technical Digest).

    Плата с микросхемой, приёмопередатчик, работающий на частоте 2,4 ГГц, дипольные антенны, аккумулятор на 8,5 миллиамперчаса — такова получилась ноша жуков-киборгов. А потянула она всего на 1,33 грамма, что меньше предельной грузоподъёмности жука-носорога, который может взлететь с тремя граммами "на борту". Это, кстати, одна из причин, по которым для новых опытов выбрали данных созданий: не каждый жук поднимет даже такой крошечный электронный модуль.

    В среднем через полсекунды после электростимуляции соответствующего нерва жуки поднимались в воздух. Вероятность успеха при нажатии на ноутбуке кнопки "взлёт" составила 97% (29 выполненных команд из 30 попыток). В самом же полёте жуки успешно маневрировали по распоряжениям учёных (выполнялись простые сигналы "вправо" и "влево").

    Причём, как оказалось, для уверенной коррекции курса не требовалось светить в правый или левый глаз создания белыми светодиодами (как в прошлом году), достаточно было просто подавать электрические импульсы сразу в зрительные участки нервной системы.

    Имплантация электродов выполняется ещё на стадии куколки, а полный комплект оборудования добавляют уже к взрослой особи. Причина – внедрение электродов сразу во взрослого жука с высокой вероятностью приводит к его гибели в течение короткого времени. Аналогично происходит дело и с попыткой имплантации контактов в личинку.

    Исследователи полагают, что жуки могут сыграть роль универсальных платформ для разнообразных датчиков, в том числе — микроскопических видеокамер. Тут опять-таки американские учёные похвалили своих трудяг-носорогов, отметив, что их предельная грузоподъёмность в 3 грамма, за вычетом 1,3 грамма на схему управления, означает возможность смонтировать на спине насекомого целевую нагрузку весом 1,7 грамма.

    Учитывая спонсорство DARPA, нетрудно предсказать военное применение новой технологии. Но сами разработчики жуков-киборгов отмечают, что гражданское применение также возможно. Скажем, можно вообразить поиск пострадавших в завалах.

    Долгосрочная цель проекта и вовсе фантастична — учёные мечтают максимальным образом задействовать собственные возможности насекомого. Зачем нужна камера, если у жука есть глаза? Может, лучше научиться снимать сигнал с них и кодировать его в радиоимпульсах, передавая картинку на компьютер? А "тяжёлый" аккумулятор для электроники в будущем может уступить место системе, извлекающей толику энергии из самого насекомого, благо он прекрасно умеет пополнять её запасы (то есть кормиться).

    Мотылёк, прошедший "тюнинг" в университете Корнелла (иллюстрация MEMS 2009 Technical Digest).

    Первое приближение к такой перспективе показала на всё той же конференции MEMS 2009 другая команда исследователей из университета Корнелла (Cornell University). Она превратила мотылька Manduca sexta (табачный бражник) в летающий химический сенсор.

    Как и в предыдущем примере, авторы этой работы имплантировали электроды в насекомое на стадии куколки. Несколько контактов с определёнными долями нервной системы (внедрённых в голову существа) позволили снимать впоследствии чёткий электрический сигнал при "экспозиции" бабочки ряду химических соединений.

    Целевые молекулы, к которым чувствительно это насекомое, вызывали в 10 раз более сильный отклик, чем нецелевые. А это значит, что, по идее, совместив биоинженерию (те же MEMS) и генетические модификации насекомых, можно построить живые датчики, облетающие местность по заданному маршруту и передающие по радио результаты измерений.

    До полноценного управления насекомыми, конечно, ещё далеко. Но ведь Корнеллом, Беркли и Мичиганом список университетов, где работают над насекомыми-киборгами, не исчерпывается. И можно предсказать новые успехи на данной ниве. Так что сны генералов понемногу сбываются.

    Биоинженерное будущее

    Что будет, если бионические протезы станут доступны каждому

    При разработке протезов возникают сложности со считыванием сигналов, которые подает мозг. Например, если человек хочет поднять руку, в его мозге активизируется около 500 миллионов нейронов. Технически можно проанализировать одновременный сигнал только нескольких сотен, поэтому только лишь наиболее совершенные (и оттого дорогостоящие) протезы оснащены сенсорами, способными измерять электрическую активность оставшейся части конечности и реагировать на этот сигнал. Работа с такими протезами требует практики, и они все еще остаются неудобными.

    Но индустрия развивается ударными темпами, и если еще 10 лет назад бионические руки, прозванные разработчиками «рукой Люка Скайуокера», были недосягаемо дороги, массивны и создавались в единичном экземпляре, то сегодня некоторые модели обойдутся в несколько тысяч долларов. Так же и три десятилетия назад мобильный телефон стоил 4000 долларов и весил килограмм, а сегодня он гораздо легче и доступен каждому. Что будет, когда подобные разработки выйдут на массовый рынок и станут общедоступными?

    Илья Чех, основатель компании W.E.A.S. Robotics и проекта по высокотехнологичному протезированию Motorica; обладатель премии «Сноба» «Сделано в России – 2016»:

    Эта сфера начинает развиваться только сейчас, как у нас, так и в мире. Сегодня она применяется исключительно для помощи инвалидам и считается одним из самых перспективных направлений в технологиях. Биоинженерия, бионика являются самым быстрорастущим направлением даже по сравнению с промышленной робототехникой. В перспективе через 20–30 лет такие услуги, как трансплантация, имплантирование чипов, искусственных органов, будут базовыми и станут доступны в практически любых клиниках. Как сейчас люди ходят на стационарное обследование, так они будут ходить в робототехнические центры. Это станет повсеместным. От этого никуда не деться.

    Технологии также помогут человеку совершенствовать собственное тело: будут развиваться бодимодификации до уровня полукиборгов. В первую очередь такие разработки коснутся военной сферы, потому что там выделяется больше денег. Потом они постепенно вольются в обычную жизнь.

    Имплантирование чипов – редкость и сейчас. Технологии еще не достигли того уровня, когда они могут стать массовыми с точки зрения безопасности и стоимости. У любого чипа или импланта до выхода на рынок есть 5–10 лет на клинические исследования. Период проверок и адаптации очень длительный. Да и еще неизвестно, что будет с человеком, который 30 лет будет носить чип.

    Тимур Сайфутдинов, руководитель лаборатории Maxbionic в Москве:

    На сегодняшний день биомехатроника, объединившая в себе медицину и робототехнику, помогает людям с ограниченными возможностями приспособиться к реалиям мира. Нельзя, например, везде поставить пандусы, но можно с помощью технологий адаптировать людей к окружающему миру. Нынешние технологии позволяют подключаться к нервной системе человека и получать большой объем данных. Анализируя их, мы сможем понять такие сложные болезни, как ДЦП или болезнь Паркинсона, и найти лекарство.

    Олимпиаду устроили, чтобы доказать, что человеческие возможности не ограничены. А теперь появился Кибатлон. Это олимпиада для людей с ограниченными возможностями, но, в отличие от Паралимпиады, они соревнуются в техническом плане, используют высокотехнологичные ассистивные устройства. Первая такая олимпиада прошла в Цюрихе в октябре 2016-го и будет проводиться каждые 4 года.

    Имплантированные механизмы увеличивают физические способности человека, помогают бежать быстрее, делают его выносливее. На сегодняшнем этапе развития самое популярное устройство – экзоскелет, который позволяет увеличить мускульную силу за счет внешнего каркаса. Основные разработки идут для военных целей. Правда, применение экзоскелета в бою очень специфично: он бесполезен из-за того, что количество вооружений и огневая мощь растет, а сам экзоскелет не дает ловкости, поэтому пока что его используют в качестве погрузочного устройства. Экзоскелет также помогает людям с ограниченными возможностями ходить, сидеть и стоять.

    В ближайшие 10 лет станут доступны протезы, которые смогут воспроизвести около 80% человеческих движений. Сейчас самый передовой воспроизводит 15%. Я думаю, после этого стоит задуматься о киборгизации. Человеком движет желание быть сильнее, быстрее и умнее. Тренд на киборгизацию есть и сейчас. Люди, имплантирующие чипы под кожу, называют себя людьми XXI века, но как далеко это зайдет, покажет только время.

    В США ежегодно выполняется 65 000 ампутаций. В 80% случаев пациенты – люди старше 50 лет. Наиболее распространены ампутации ниже колена. Главная причина ампутаций – заболевания сосудов и травмы. С врожденным отсутствием конечностей живут лишь 4%.

    По данным Росстата, всего в России 12,8 млн инвалидов. Из них инвалидов I группы – 1,3 млн человек, II группы – 6,3 млн человек, III группы – 4,6 млн человек, детей-инвалидов – 617 000. По подсчетам Минтруда на 2015 год, 86,6% инвалидов обеспечены техническими средствами реабилитации. В том же году государство выделило 676 743 протеза, 2408 приспособлений для одевания, раздевания и захвата предметов.

    Выдели ее и нажми ctrl + enter

    В ожидании Кибатлона

    В Кибатлоне примут участие 80 исследовательских групп из 25 стран, от маленьких стартапов до крупнейших мировых производителей навороченнейших протезов.

    Киборги уже много десятилетий живут рядом с нами. Это обычные люди – но с кардиостимуляторами, протезами конечностей, биосенсорами или слуховыми имплантами.

    Энтузиазм учёных относительно нашего киборгизированного будущего далеко не всегда вызывает энтузиазм у обычных людей. Причём одно дело протез, и совсем другое, когда нам обещают массово что-то имплантировать в мозг.

    Задачами Управления биологических технологий DARPA будет разработка технологий подключения мозга к компьютерам, создание искусственных биологических материалов и разработка детекторов биологического оружия.

    В DARPA считают мышечные нейроинтерфейсы очень перспективными

    Инженеры американского оборонного научного агентства DARPA объявили о значительном прогрессе в области мышечных нейроинтерфейсов, которые разрабатываются в рамках специальной военной программы RE-NET.

    Электронное СМИ зарегистрировано 12.03.2009

    Свидетельство о регистрации Эл № ФС 77-35618

    Биоинженерия или киборгизация
    биоинженерия или киборгизация Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и
    http://itnan.ru/post.php?c=2&p=271654
    БИОИНЖЕНЕРИЯ НАСЕКОМЫХ-КИБОРГОВ
    Биоинженерия насекомых-киборгов
    http://animalworld.com.ua/news/Bioinzhenerija-nasekomyh-kiborgov
    Биоинженерное будущее
    Биоинженерное будущее — Статьи портала "Вечная молодость"
    http://www.vechnayamolodost.ru/articles/drugie-nauki-o-zhizni/bioinzhenernoe-budushchee/

    COMMENTS