Схема зарядного для автомобиля

Зарядное устройство для аккумулятора автомобиля: как сделать своими руками, варианты, схемы, правила

Состав и термины

Автозарядка состоит из первичного источника электропитания для собственно зарядного устройства, которое обеспечивает заданный режим заряда аккумуляторной батареи, и схем защиты ее от разного рода нештатных ситуаций. Схемотехнически эти узлы могут быть в той или иной степени объединены. Далее для краткости употребляются след. сокращения:

  • АКБ – аккумуляторная батарея.
  • ПИ – первичный источник питания.
  • ИП – любой другой источник питания.
  • УЗ – устройство защиты.
  • ТЗ – защита по току.
  • ЗН – защита от перенапряжения.

Свинцово-кислотные аккумуляторы отличаются «дубовостью», эксплуатационной выносливостью, отчего и держатся нерушимо в автотранспорте. Причина – простота электрохимических процессов в свинцово-кислотной АКБ. Для контроля за ее текущим состоянием в большинстве случаев достаточно знать величину напряжения всей батареи без разбивки по банкам. Но перезаряд свинцово-кислотной АКБ может вызвать вскипание электролита в ней. На ходу автомобиля это очень опасно, поэтому в бортсети АКБ хронически недозаряжается. Постоянный недозаряд приводит к преждевременной сульфатации пластин и снижению ресурса АКБ. Ситуация усугубляется в холодное время года, даже если гараж или место стоянки отапливается, т.к. до комнатной температуры их не греют. Если же в перерывах между поездками дозаряжать АКБ по максимуму, сколько она способна принять энергии при данной наружной температуре, то «акумыч» проживет хорошо и долго даже в суровых условиях. Дозаряд АКБ как раз и обеспечивает зарядное устройство для аккумулятора, но это еще не все. Правильно построенное зарядное устройство дает также десульфатирующий эффект. Если зимой ежесуточно на ночь снимать АКБ и ставить на дозаряд, она выдерживает количество циклов заряд-разряд в 1,5-2 раза против прописанного в ТУ в расчете на типовой режим эксплуатации. Также зарядка с десульфатацией иногда способна спасти АКБ, «убитую», напр., при попытках завести машину на холоде. И, наконец, емкость неиспользуемой АКБ за месяц падает на 15-30% вследствие саморазряда. Если же на это время поставить АКБ на содержание под током от зарядки (см. далее), то аккумулятор будет всегда свежим. И, между прочим, постановка неиспользуемой АКБ на содержание также уменьшает сульфатацию пластин.

Свинцовые АКБ заряжают током, равным току их 10-часового разряда: 6 А для АКБ на 60 А/ч, 9 А для 90 А/ч, 12 А для 120 А/ч. Больший ток вызовет перегрев и, возможно, вскипание электролита, отчего ресурс батареи резко снижается вплоть до полной негодности. Меньший зарядный ток ресурс АКБ практически не увеличивает, но удлиняет время заряда.

Зарядный ток в АКБ течет обратно рабочему. Важнейшее условие при этом – напряжение на АКБ не должно превысить 2,7 В на банку (8,1 В для 6 В АКБ, 16,2 В для 12 В АКБ, 27 В для 24 В АКБ), иначе начнется химическое разложение электролита, пластин, и АКБ закипит даже при небольшом зарядном токе. Чтобы полностью исключить закипание, допустимое напряжение заряда ограничивают 2,6 В на банку (7,8 В, 15,6 В, 26 В соотв.); при этом недозаряд по энергии составит менее 5% и усиления сульфатации не будет.

Если отключить полностью заряженную АКБ от ЗУ, дать ей остыть и померить напряжение без нагрузки, увидим 2,4 В на банку (6,8 В, 14,4 В, 24 В). В работе при разряде напряжение АКБ плавно падает до 1,8 В на банку (5,4 В, 10,8 В, 21,6 В), после чего батарея считается полностью разряженной. На самом деле в ней остается ок. 25% «закачанной» при заряде энергии, и способы «высосать» ее в экстренной ситуации до последнего эрга есть, но АКБ после этого придется сдать на утилизацию. Выбрасывать нельзя, там свинец.

При заряде от внешнего ЗУ напряжение на АКБ ограничивают величиной 2,4 В на банку (6,8 В, 14,4 В, 24 В), т.к. «наливать энергии по горлышко», до 2,6 В на банку, рискованно – АКБ при заряде греется и может уйти в саморазогрев. Полностью АКБ дозаряжают и предохраняют от саморазряда т. наз. током содержания, равным 0,5-1 тока 100-часового разряда (0,3-0,6 А, 0,45-0,9 А и 0,6-1,2 А для АКБ на 60 А/ч, 90 А/ч и 120 А/ч соотв.); напряжение на батарее при этом не должно превысить 2,6 В на банку. Практически для этого в ЗУ ставят защиту от перенапряжения на 15,6 В для 12 В АКБ, 7,8 В и 26 В для 6 В и 24 В АКБ. Если она сработала, АКБ приняла энергии, сколько может, и дальше ее заряжать нельзя.

Исходя из условий эксплуатации индивидуального автотранспорта и указанных условий режима заряда АКБ, требования к ЗУ для автоаккумулятора вырисовываются такие:

  • Самодельное ЗУ для автоаккумулятора должно быть автономным, не требующим присмотра и контроля тока/напряжения заряда, т.к. АКБ будет ставиться на заряд преимущественно на ночь;
  • ПИ ЗУ должен обеспечивать стабильное напряжение 14,4 В, допустимо, в случае, когда на УЗ есть падение напряжения, 15,6 В;
  • УЗ должно обеспечивать необратимое отключение АКБ от ЗУ как при превышении тока заряда, так и при повышении напряжения на АКБ свыше 15,6 В. Необратимое значит, что УЗ должно быть самоблокирующимся, т.е. для сброса его в исходное состояние нужно будет выключить и снова включить ИП;
  • Также УЗ должно обеспечивать защиту от переполюсовки, т.е. неправильного, в обратной полярности, подключения АКБ. При соблюдении условий по п. 3 защита от переполюсовки обеспечивается автоматически.

В случае переполюсовки АКБ возможны 2 случая: АКБ исправна недозаряжена либо глубоко разряжена и/или «доходная», истощенная, в значительной степени выработавшая ресурс, или же на заряд неправильно подключают полностью заряженную батарею. В первом случае (исправна недозаряжена) ток заряда увеличивается сверх номинального. Во втором перед этим на короткое время «прыгнет» напряжение АКБ сверх заданного ИП, а потом сразу «шарахнет» экстраток и АКБ вскипит. В последней ситуации, чтобы спасти АКБ от непоправимой порчи, ее нужно успеть отключить по перенапряжению.

Поговорим вначале и типичных ошибках конструирования самодельных ЗУ для свинцовых АКБ. Первую иллюстрируют поз. вверху. Подключение непосредственно к бытовой электросети (слева) обсуждения не стоит. Это не ошибка, это грубейшее и опасное нарушение ПТБ. Ошибка – в ограничении тока заряда емкостным балластом. Дорогой, кстати, это способ по сегодняшним меркам: одна только батарея масляно-бумажных конденсаторов на 32 мкФ 350 В (на меньшее напряжение нельзя) стоит больше, чем хорошая фирменная зарядка.

Неправильно и нерационально построенные схемы зарядных устройств для автомобильных аккумуляторов

Но главное – в сети появляется реактивная нагрузка. Если в вашем электросчетчике есть индикатор реактивности (светодиод «Возврат»), то при включении этих зарядок в сеть он вспыхнет. Управление современным электрохозяйством невозможно без компьютеров, а «обратка» сбивает электронику с толку даже до отключений по ложной аварии. Поэтому теперешние электрики к реактивке беспощадны. Ну, а вдруг обнаружится, что ее источник неграмотный или излишне хитроумный потребитель, то… не будем на ночь глядя.

Схема внизу, если на считать того же емкостного балласта, разработана квалифицированно, это ЗУ защитит АКБ, образно говоря, и от Тунгусского метеорита; (с подробным ее описанием можно познакомиться здесь: http://ydoma.info/avtomobil-zaryadnoe-ustrojstvo-dlya-avtomobilnogo-akkumulyatora.html). Но, при всем уважении к безусловно знающему свое дело автору, строить так сложно (и дорого) ЗУ для свинцовых АКБ все равно что назначать командовать взводом опытных закаленных солдат нянечку из детсадика. Свинцовому аккумулятору для хорошей жизни нужно немногое. Чем мы далее и займемся.

УЗ для АКБ что броня для танка, так что с него и начнем. УЗ для самодельного ЗУ АКБ желательно делать, разумеется, попроще. Далее, УЗ также желательно строить автономным, чтобы через него можно было подключать АКБ к любому ЗУ, схема которого вам приглянется, или которое у вас уже есть. И последнее, УЗ должно срабатывать как можно четче и быстрее, для возможности использования его в схемах заряда современных аккумуляторов с герметичными банками.

Малоэффективные схемы защиты автоаккумуляторов

Простейшая защита от переполюсовки диодами Шоттки (слева на рис.) не спасет от экстратока перезаряда или при неправильном подключении исправной недозаряженной АКБ. Разве что путем сгорания недешевой диодной сборки. Если аккумулятор «новый, хороший», то, пока руки не дойдут до «нового, хорошего» ЗУ, может выручить интегрированная защита по схеме справа; ее можно встроить в уже имеющийся самодельный лабораторный ИП.

В данной схеме используются медленный отклик АКБ на скачок напряжения и гистерезис реле: их ток (и напряжение) отпускания в 2,5-4 раза меньше тока/напряжения срабатывания. Любое ЗУ АКБ включают только с подключенной АКБ. Реле – переменного тока на напряжение срабатывания 24 В и ток через контакты от 6 (9, 12) А. При включении ЗУ реле срабатывает, контакты его замыкаются, пошел заряд. Напряжение на выходе трансформатора падает ниже 24 В, но на выходе ЗУ остается 14,4 В, выставленных заранее под нагрузкой R3 в схеме стабилизации напряжения. Реле пока держит, но, вдруг пошел экстраток, первичное напряжение просядет больше, реле отпустит и цепь заряда разорвется.

Недостатки у этого ЗУ серьезные. Во-первых, нет защиты от скачка напряжения по выходу от переполюсовки истощенной АКБ. Во-вторых, нет самоблокировки: от экстратока реле будет хлопать и хлопать, пока контакты не обгорят. В-третьих, нечеткое срабатывание: любое реле по недонапряжению на обмотке отпускает с дребезгом контактов. Поэтому пытаться ввести в эту схему регулировку тока срабатывания бессмысленно. И, наконец, реле и трансформатор Т1 должны быть подобраны друг к другу, т.е. повторяемость данного устройства близка к нулевой.

Схема УЗ, полностью соответствующая указанным выше требованиям, дана на рис.:

Простая схема защиты аккумулятора автомобиля от перезаряда, перенапряжения и переполюсовки

Ток заряда течет через нормально замкнутые контакты реле K1, что намного уменьшает вероятность их обгорания. Обмотка K1 подключена по логической схеме диодного «или» к модулю защиты от экстратока (R1, VT1, VD1), модулю защиты от перенапряжения (R2, R3, R4, VT2, VD2) и цепи самоблокировки K1.2, VD3; порог срабатывания K1 по перенапряжению устанавливается R3. Недостаток у этого УЗ всего один, его нужно налаживать с использованием балластной нагрузки и мультиметра:

Примечание: чтобы не резать много раз нихром для R1 – его удельное сопротивление 1 Ом*м/кв. мм. Т.е., 1 м нихромовой проволоки сечением 1 кв. мм имеет сопротивление 1 Ом.

В наши дни компьютерный импульсный блок питания (ИБП) может оказаться доступнее трансформатора на железе; вдруг он просто в хламе валяется. ИБП часто переделывают в лабораторные БП, но, вообще говоря, это плохой вариант. Выходное напряжение по каналу +12 В удается задрать максимум до 16-17 В, чего для конструкторско-исследовательских целей маловато. А уровень импульсных помех на выходе тогда, мягко говоря, великоват. Как налаживать УМЗЧ с собственными шумами в –66 дБ (что еще очень скромненько), если по питанию «шерсти прет» на –44 дБ или хуже того? Но вот зарядка для аккумулятора автомобиля на 60 А/ч из ИБП получается отличная, и отдельную защиту городить не надо, все уже есть. Переделывают ИБП в авто ЗУ в целом след. образом:

Примечание: подробно два варианта переделки ИБП в ЗУ АКБ можете посмотреть на видео ниже.

Видео: примеры переделки компьютерных БП в ЗУ для АКБ

Если лишнего ИБП под рукой нет, то для ИП ЗУ нужно искать трансформатор на железе, его собственная постоянная времени (электрическая инерция) больше таковой АКБ, что очень хорошо по безопасности пользования. «Лепить» самодельный ИБП ни в коем случае не надо, его постоянная времени по выходу на 2 порядка меньше, чем у АКБ. Самодельный ИБП для ЗУ без сложных встроенных схем защиты способен стать причиной разного рода нештатных ситуаций. Помните – кипение электролита это туман и брызги крепкой ядовитой кислоты! А если АКБ с герметичными банками, то возможен и ее взрыв!

ИП ЗУ состоит из понижающего трансформатора и выпрямителя. Сглаживающий фильтр для зарядки АКБ не нужен. Трансформатор ИП ЗУ рекомендуют искать силовой с накальными обмотками от старых ламповых телевизоров – ТС-130, ТС-180, ТС-220, ТС-270. По мощности они годятся с избытком, но, во-первых, от влаги никак не защищены, в гараже могут и не перезимовать. Во-вторых, специалисты по вторичным металлам прекрасно знают, сколько выручки дает ТС, и найти их становится все труднее.

Понижающие трансформаторы типов ТП и ТПП

Примечание: ТП и ТПП лучше брать на одно первичное напряжение 220 В, такие при прочих равных условиях на 10-15% дешевле.

Типовые схемы соединения обмоток ТП и ТПП на 12,6 В под выпрямление мостом или двухполупериодное со средней точкой даны на рис. слева и справа:

Схемы соединения обмоток типовых трансформаторов питания

У конкретного экземпляра они могут отличаться, т.к. производители вправе произвольно менять разводку выводов по ТУ заказчика. Остатки идут в продажу, а выпуск особо популярного типономинала может быть продолжен для рынка. Поэтому, приобретая ТП или ТПП, сверяйтесь со спецификацией к нему; если ее нет, придется вызванивать обмотки. Общие правила разводки выводов и соединения обмоток ТП/ТПП такие:

  1. Сетевые (первичные) обмотки выводятся на первые номера.
  2. Межобмоточные экраны выводятся на последние номера.
  3. Для соединения обмоток в параллель нечетные выводы соединяются с нечетными; четные – с четными.
  4. Для последовательного соединения обмоток нечетные выводы соединяются с четными.

Примечание: выводы экранов (15 и 16) можно комбинировать как угодно, т.к. межобмоточные экраны не являются короткозамкнутыми витками.

Вариант подешевле – присмотреть на железном базаре старый накальный трансформатор ТН; система обозначений аналогична ТП/ТПП. «Кладоискатели» до ТНов не охочи: возни с разборкой много, медяшки мало. Типовая схема включения ТН для ЗУ дана на врезке в центре рис. Переключать, для повышения выходного напряжения, нижний по схеме диод с вывода 15 на 16 нельзя, нарушится симметрия обмоток!

Выходные напряжения на схемах выше даны для входного (сетевого) 220 В. Если оно упадет, пойдет недозаряд. Вместе с тем, поскольку АКБ на заряд от внешнего ЗУ ставят холодной, остается некоторый запас на увеличение напряжения заряда; его возможно использовать полностью, если ЗУ с защитой. В таком случае выпрямитель нужно делать со средней точкой на сборке диодов Шоттки – выходное напряжение увеличится прим. на 0,6 В.

Современные диоды Шоттки с платиновым барьером для использования в ЗУ АКБ вполне пригодны, см. спецификацию на рис.:

Спецификация на сборку диодов Шоттки для выпрямителя зарядного устройства автоаккумулятора

Кроме того, на сборку из пары диодов Шоттки нужен радиатор от 50 кв. см, а каждому обычному, с p-n переходом, на ток до 10 А – от 100 кв. см. Брать сборки Шоттки нужно с максимальным обратным напряжением от 35 В и пиковым прямым током от 30 А, т.к. в схеме выпрямителя со средней точкой соотв. величины достигают 1,7 амплитудного значения напряжения вторичной обмотки и 2,4 выпрямленного тока (31 В и 24 А при 12,6 В и 10 А; начальный пиковый ток заряда полностью разряженной АКБ на 60 А/ч – 10 А).

Область применения управляемых тиристорных выпрямителей ограничена из-за создаваемых ими больших коммутационных помех на выпрямленном напряжении. Но в ЗУ эти помехи не помеха, АКБ погасит. Зато по прочим свойствам тиристорные выпрямители для заряда АКБ не просто подходят, но подходят идеально.

Дело в том, что после тиристорного выпрямления без сглаживания зарядный ток на АКБ подается короткими импульсами с обрезанным фронтом увеличенной (но не чрезмерно) амплитуды. Как следствие, зарядка для авто аккумулятора с тиристорным выпрямителем дает десульфатирующий эффект без каких-либо дополнительных премудростей. И, что тоже важно, вероятность ухода АКБ в саморазогрев при заряде от тиристорного ЗУ на порядок меньше: ненужная электрохимия успевает рассосаться в промежутках между импульсами. Еще плюс такой же, как у диодов Шоттки: радиатор для пары тиристоров нужен той же площади, что для сборки Шоттки.

Простоты ради тиристорные ЗУ часто строят по схеме однополупериодного выпрямления, см. рис.:

Тиристорные зарядные устройства для автоаккумуляторов с однополупериодным выпрямлением

Нижняя схема самая дешевая, т.к. для управления силовым тиристором вместо маломощного тиристора используется его аналог на транзисторах, он вдвое-втрое дешевле. Схема справа вверху самая дорогая из-за совсем недешевого промышленного тиристора Т122-25, к которому нужен еще и антишумовой фильтр C1T1C2. В остальном эти ЗУ равноценны.

Недостаток у однополупериодных тиристорных ЗУ один, но фатальный – то самое однополупериодное выпрямление. Половина первичных полуволн тока пропадает. Чтобы не затягивать заряд вдвое, приходится соотв. увеличивать амплитуду зарядного импульса. Она выходит за допустимые пределы, и преимущества тиристорного выпрямления сводятся на нет. Наоборот, однополупериодное тиристорное ЗУ опаснее для АКБ, чем диодное.

Схемы ЗУ для автоаккумуляторов с двухполупериодным тиристорным выпрямлением сохраняют все его достоинства и лишены указанного выше недостатка. Но подход к построению тиристорного выпрямителя нужен соответственный. Напр., схема слева на рис. – типично любительская. Выпрямитель сделан аналогично диодному мосту, что вдвое увеличивает падение напряжения на нем и требует пары совсем ненужных довольно дорогих компонент. Коммутационные помехи от такого ЗУ сильные, и нужно мотать нетиповой трансформатор.

Схемы тиристорных зарядных устройств для автоаккумуляторов с двухполупериодным выпрямлением

Близка к оптимальной для тиристорных схема известной автозарядки Amperus, справа на рис. Ее авторы позаботились и о хорошей антишумовой развязке цепей управления, что позволяет использовать Amperus в квартире. Единственный небольшой недостаток – ток и напряжение заряда взаимозависимы, т.к. выставляются совместно резистором на 1 кОм. Поэтому использовать Amperus желательно с УЗ (см. выше).

Очень хорошее простое и недорогое зарядное устройство для аккумулятора автомобиля может быть построено на основе универсального преобразователя DC/DC TC43200; он представляет собой импульсный тиристорный преобразователь напряжения с раздельными независимыми регулировками ограничения по току и величине стабилизированного выходного напряжения, слева на рис. TC43200 можно купить на том же Али Экспресс, а по расходам сравнительно со схемами на россыпи – отдельных дискретных компонентах, и радиаторами к ним, для ЗУ на TC43200 там же можно приобрести универсальный указатель тока/напряжения (в центре) и не требующий радиатора диодный мост на 10 А, напр. KBPC5010. Все вместе выйдет дешевле.

Простое недорогое зарядное устройство для аккумулятора автомобиля на преобразователе напряжения TC43200

Схема ЗУ АКБ на TC43200 дана справа. Входное напряжение – от 18 В; емкость C1 достаточна 220 мкФ. Налаживание предельно простое:

  • Включаем ЗУ без нагрузки;
  • Регулятором напряжения выставляем 5 В на выходе;
  • Замыкаем выход накоротко;
  • Регулятором тока выставляем нужный ток заряда, до 10 А;
  • Раскорачиваем выход (нагрузка не нужна);
  • Регулятором напряжения устанавливаем на нем 14,4 В или 15,6 В для использования со схемой защиты.

Недостатки TC43200 невелики и легко устранимы – радиаторы маловаты, а встроенной аварийной защиты нет. Длительной работы в режиме КЗ TC43200 не выдержит и АКБ от вскипания не спасет. Поэтому ЗУ на TC43200 требуется отдельное защитное устройство наподобие описанного выше.

Сообщества › Кулибин Club › Блог › Простое зарядное устройство

Обычно подзарядка аккумулятора в транспортном средстве происходит во время работы генератора. Однако, при длительном простое автомобиля, на морозе или при наличии неисправностей батарея может разрядиться до такой степени, что становится не способной обеспечить ток, необходимый для запуска двигателя. И здесь на помощь приходит зарядное устройство для автомобильного аккумулятора. Однако стоимость зарядного устройства сильно "бьёт" по карману, и поэтому я решил сам собрать зарядное устройство. Оно позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы, устройства для резки пенопласта, автомобильного насоса-компрессора для подкачки колёс. Устройство не содержит дефицитных деталей и при исправных элементах не требует налаживания. Для данной схемы использован сетевой понижающий трансформатор ТС270-1(выдран из старого лампового телевизора) с напряжением вторичной обмотки 17В. Без внесения изменений подойдет любой с напряжением на вторичной обмотке от 17 до 22В. Корпус использован от блока управления станции катодной защиты газопровода КСС-600(охлаждение в корпусе естественное). В данном зарядном устройстве есть возможность, при возникшей необходимости, установить схему для зарядки малогабаритных аккумуляторов (типа Д-0.55С и др). При этом контроль зарядного тока осуществляется установленным миллиамперметром.

Принципиальная схема устройства показана на фото ниже.

Она представляет собой традиционный тринисторный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VD1-4. Узел управления тринистором выполнен на аналоге однопереходного транзистора VT1,VT2. Время, в течение которого конденсатор С1 заряжается до переключения можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот. Диод VD5 защищает управляющую цепь тринистора от обратного напряжения, возникающего при включении тринистора VS1. Печатная плата устройства и монтажная плата на фото ниже.

Если у готового, используемого трансформатора на вторичной обмотке более 17В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26В до 200Ом). В случае, когда вторичная обмотка имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двухполупериодной схеме на двух диодах.

А при сборке выпрямителя точно по схеме подойдут следующие детали:

С1 — К73-11, емкостью от 0,47 до 1мкФ, а также К73-16, К42У-2, МБГП.

Диоды VD1 — VD4 могут быть любыми на прямой ток 10А и обратное напряжение не менее 50В (это серии Д242, КД203, КД210, КД213).

Вместо тринистора Т10-25 подойдут КУ202В — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тринисторами Т-160, Т-250 (В моём случае это Т10-25).

Транзистор КТ361А заменим на КТ361Б — КТ361Е, КТ3107, КТ502В, КТ502Г, КТ501Ж — КТ501К, а КТ315А — на КТ315Б — КТ315Д, КТ312Б, КТ3102А, КТ503В — КТ503Г, П307.

Вместо диода КД105Б подойдут диоды КД105В, КД105 или Д226 с любым буквенным индексом.

Переменный резистор R1 — СП-1, СП3-30а или СПО-1.

Амперметр РА1 — любой постоянного тока со шкалой на 10А либо изготовить самому из любого миллиамперметра, подобрав к нему шунт.

Вольтметр РV1 — любой постоянного тока со шкалой на 16Вольт.

Предохранитель FU1 – плавкий на 3А, FU2 – плавкий на 10А.

Диоды и тринистор необходимо установить на теплоотводы, каждый полезной площадью около 100см?. Для улучшения теплового контакта данных деталей с теплоотводами желательно использовать теплопроводные пасты.

Больше фото можно посмотреть в моём блоге тут:)

Понравилась схемка своей простотой. В закладки однозначно! Классика всегда будет жить!

Планирую вместо ТС воткнуть транс ТПП, вторичка будет на 17В 3,7А. Думаю потянет.

Спасибо!) Вольтаж чуть поменьше и норм)

Всем привет! Собрал указанную схему ЗУ, все работает, все устраивает, ток до 10 А без проблем. Но, странно ведет себя трансформатор. При повышении тока начинает неприятно зудеть (не путать с обычным нормальным гудением). Отключаю блок управления и нагружаю сразу после диодов — нормальный естественный гул. Кстати, схема выпрямления двухполупериодная со средней точкой. Похоже тиристор вносит изменения в работу трансформатора. Вопрос к автору статьи и участникам. Была ли у кого такая проблема и возможно ли её решения? Спасибо.

Под нагрузкой трансформатор начинает немного "зудеть". Шум в рабочих приделах, на работу не влияет…

Всем привет! Собрал указанную схему ЗУ, все работает, все устраивает, ток до 10 А без проблем. Но, странно ведет себя трансформатор. При повышении тока начинает неприятно зудеть (не путать с обычным нормальным гудением). Отключаю блок управления и нагружаю сразу после диодов — нормальный естественный гул. Кстати, схема выпрямления двухполупериодная со средней точкой. Похоже тиристор вносит изменения в работу трансформатора. Вопрос к автору статьи и участникам. Была ли у кого такая проблема и возможно ли её решения? Спасибо.

Собрал недавно, тоже звенит транс, только на оборот, при полной нагрузке работает идеально, а при уменьшениии звенит неприятно.

Привет! Поясни выводы на плате 1 2 3 4 какой куда идёт .

На схеме каждый контакт подписан) Подробнее в лс)

Здравствуйте! А можете подсказать, будет ли схема работать с трансформатором, на выходе вторички которого 30 вольт? если нет, то что нужно заменить?

Добрый день) 30 вольт очень много…есть вариант перемотать трансформатор…или поставить понижающий стабилизатор напряжения…правда он будет очень греться…

Привет друзья! Тоже хотел собрать себе атомобильное ЗУ с возможностью регулировки зарядного тока))

В первый раз, после того как увлекся электроникой создал обычный выпрямитель, точно такой же как в этой статье: www.ruselectronic.com/new…rojstvo-dlja-avtomobilja/. Но он оказался не эффективным, разобрал его. Он не имел ни какой платы управления зарядным током. просто трансформатор + диодный мост на выходе и всё. Мог отдавать максимальный зарядный ток не более 5 А. Это нормально, но беда была в том что в конце зарядки начиналось обильное, бурное газовыделение, начинал кипеть электролит. Напряжение заряда мог достигать до 17 В, может и более, что уже плохо, не допустимо.

Есть у меня дома трансформатор на 400 Вт. Решил из него собрать автомобильное ЗУ с возможностью регулировки зарядного тока))

Собрал я печатную плату, точно такую же как и у тебя, но она не заработала. Не знаю почему, нуждаюсь в вашей помощи)) Пробовал заменить тиристор и ничего, после конденсатор, тоже ничего.

Такая проблема, при проверки устройства в качестве нагрузки подключил лампочку галогенку от комбайна на 12В 40 Вт. Лампочка загорелся слабым накалом, напряжение было 0,6 В вроде. покрутил переменный резистор в обе стороны, напряжение на выходе не менялось, лампочка горела таким же тусклым светом((

Пиши в лс, будем разбираться)

Спасибо большое за ваш ответ и за предложенный помощь разобраться, но я уже нашёл причину неисправности, он же оказался в не запаянном среднем выводе переменного резистора. После его запайке схема заработала. спасибо за внимание.

  • История редактирования

Привет друзья! Тоже хотел собрать себе атомобильное ЗУ с возможностью регулировки зарядного тока))

В первый раз, после того как увлекся электроникой создал обычный выпрямитель, точно такой же как в этой статье: www.ruselectronic.com/new…rojstvo-dlja-avtomobilja/. Но он оказался не эффективным, разобрал его. Он не имел ни какой платы управления зарядным током. просто трансформатор + диодный мост на выходе и всё. Мог отдавать максимальный зарядный ток не более 5 А. Это нормально, но беда была в том что в конце зарядки начиналось обильное, бурное газовыделение, начинал кипеть электролит. Напряжение заряда мог достигать до 17 В, может и более, что уже плохо, не допустимо.

Есть у меня дома трансформатор на 400 Вт. Решил из него собрать автомобильное ЗУ с возможностью регулировки зарядного тока))

Собрал я печатную плату, точно такую же как и у тебя, но она не заработала. Не знаю почему, нуждаюсь в вашей помощи)) Пробовал заменить тиристор и ничего, после конденсатор, тоже ничего.

Такая проблема, при проверки устройства в качестве нагрузки подключил лампочку галогенку от комбайна на 12В 40 Вт. Лампочка загорелся слабым накалом, напряжение было 0,6 В вроде. покрутил переменный резистор в обе стороны, напряжение на выходе не менялось, лампочка горела таким же тусклым светом((

Привет! Автор не отвечает, подскажи с выводами на плате 1234какой куда запутался

Подскажи пожалуйста если знаешь, сделал все вроде по твоей схеме, и получилось что у переменного резистора очень короткий диапазон регулировки. Может какой то другой переменный резистор подобрать?

Всё должно быть по номиналу. Если ты уверен что подобрал резистор по схеме, тогда проверь транзисторы. Проще их заменить на новые (они не дифицитные)

поставил переменик на 10кОм, все работает отлично.

Классная схема, скиньте печатку пожалйста на din5953@mail.ru

на вид просто ахтунговая система ))

я тоже по этой схеме делал, главное схема простая и надежная))

ПРИКОЛЬНЫЙ Я ТОЖЕ СЕБЕ МУДРИЛ НА КУ 202Е

Хорошее зарядное, молодцом! Сам делаю по такой же схеме, как тс-270 тянет, сильно греется? И чем грозит если у меня 22 вольта, а r-5 на150, а не на 200?

Спасибо) Не греется вообще)Грозит повышенным напряжением на выходе…желательно поменять резистор)

Зачем милиамперметор? Судя по фото, вроде бы не подключен? Да и на схеме его в цепи не видно.

Дело в том что в крышке было отверстие и мне пришлось закрыть его неработающим миллиамперметром)

Зачем милиамперметор? Судя по фото, вроде бы не подключен? Да и на схеме его в цепи не видно.

он нужен для калибровки аккумулятора 🙂

Да? Ну распиши тогда, что, да как там? Уверен, всем будет интересно.

респект вот только бы с регулировкой по первичке было б лучше

Спасибо!) Поспорил бы, регулировка по вторичке надёжнее)

скиньте мне печатку пожалуйста ernest_veiman@mail.ru

понравилась схема, давно лежит трансформатор с напряжением 20 вольт, надеюсь эта схема как раз подойдет, и несложная вроде.

спасибо получил, буду мутить.

Удачи в сборке) Выкладывай-заценим)

Скинь пожалуйста печатку

Можете печатку скинуть мне? на vit2756@yandex.ru

Спасибо) У меня эта схема уже лет 10 назад как собрана. Работает отлично.

Ха. Нафик щас что-то такое самому лепить.

На базаре за 50 грн был куплен древний нерегулируемый БП из трансформатора на 18/30 вольт (кстати — такой самый ТВС), 8-и диодов 242-х кажись, вольт и амперметра. Для регулировки обошелся обычным регулируемым выключателем для комнатного освещения за 20 гривень, подключив его между штепселем и первичной обмоткой трансформатора.

Интерес скорее не в выгоде, а в том что ты сам делаешь руками) Это бесценно)

Ну речь о том, что и самому слепить можно более простым способом :))

Чтоб травить плату, паять и т.д. — надо времени свободного кучу иметь.

Тем не менее — молодец.

Интерес скорее не в выгоде, а в том что ты сам делаешь руками) Это бесценно)

Суть в том, чтобы сделать один раз и на всю жизнь. А не покупать каждые 10 лет.

Интерес скорее не в выгоде, а в том что ты сам делаешь руками) Это бесценно)

+1, соглашусь с топикстартером

Молодец, хорошо сделал! у самого руки не доходят сделать, куча блоков питания от компов валяется.

Спасибо:) Да, из бп от компов тоже тема)

думал я над этим. он там дает 13 — 13,5 вольт, а надо 15-17 на выходе. И регулировку куда-то всобачить надо.

на амперметр наверно непосредственно с мостика надо, а не через R1

Схема зарядного устройства для автомобильного аккумулятора – от простого к сложному

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна. Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой аккумулятора: то есть, зарядным устройством.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Любая схема автомобильного зарядного устройства состоит из следующих компонентов:

  • Блок питания.
  • Стабилизатор тока.
  • Регулятор силы тока заряда. Может быть ручным или автоматическим.
  • Индикатор уровня тока и (или) напряжения заряда.
  • Опционально – контроль заряда с автоматическим отключением.

Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.

Схема простого зарядного устройства для автомобильного аккумулятора

Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).

Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов: блок питания, регулятор, индикатор.

Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой. Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется.

Ток заряда регулируется реостатом.

Проволочный реостат необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно.

Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата). Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.

Зарядное устройство своими руками, подробности, схемы — видео

Принцип работы изображен на схеме.

Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток. Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.

Если добавить еще один элемент – автоматический контроль заряда, а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении.

Схема контроля заряда и автоматического отключения, в комментариях не нуждается. Технология отработана, один из вариантов вы видите на общей схеме. Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку. В качестве индикатора выступает амперметр, который перестает показывать ток заряда.

Изюминка зарядного устройства – конденсаторная батарея. Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток. Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.

При этом никакого паразитного нагрева (кроме естественного, выделяющегося на диодах моста), коэффициент полезного действия зарядника высокий.

Схема самодельного зарядного устройства для аккумулятора на тринисторе

Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике.

В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник. Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.

Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.

Схема надежная, легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.

То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.

Схема импульсного зарядного устройства для автомобильного аккумулятора

Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД. К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля.

Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153. В данной схеме реализован классический полу мостовой инвертор.

При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать аккумуляторы емкостью до 200 Ач.

Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется, но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса.

В качестве донора может выступить блок питания от системника ПК.

Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.

На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.

Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).

Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».

Зарядное устройство для аккумулятора автомобиля как сделать своими руками, варианты, схемы, правила
Зарядное устройство для аккумулятора автомобиля: как сделать своими руками, варианты, схемы, правила Состав и термины Автозарядка состоит из первичного источника электропитания для
http://vopros-remont.ru/elektrika/zaryadnoe-ustrojstvo-dlya-akkumulyatora-avtomobilya/
Сообщества › Кулибин Club › Блог › Простое зарядное устройство
Обычно подзарядка аккумулятора в транспортном средстве происходит во время работы генератора. Однако, при длительном простое автомобиля, на морозе или при наличии неисправностей батарея может разрядиться до такой степени, что становится не способной обеспечить ток, необходимый для запуска двигателя.…
http://www.drive2.ru/c/2014662/
Схема зарядного устройства для автомобильного аккумулятора – от простого к сложному
Иногда проще собрать свое ЗУ с требуемыми характеристиками, чем купить в магазине, но для этого нужна схема зарядного устройства. Как это сделать в нашей статье
http://obinstrumente.ru/elektronika/sxema-zaryadnogo-ustrojstva-dlya-avtomobilnogo-akkumulyatora.html

COMMENTS